1	с	$eg12 \times \frac{4x-2}{3} - 12 \times \frac{5-3x}{4} = 12 \times 6 \text{ or}$			M1	for clear intention to multiply all terms by 12 or a multiple of 12
		eg $4(4x-2) - 3(5-3x) = 12 \times 6$ or eg $\frac{4(4x-2)}{12} - \frac{3(5-3x)}{12} (= 6)$ or				or to express LHS as two fractions over 12 or a multiple of 12 or as a single fraction with a denominator of 12 or a multiple of 12
		eg $\frac{4(4x-2)-3(5-3x)}{12}$ (= 6) oe				(if expanded numerator, allow one sign error)
		eg $16x - 8 - 15 + 9x = 6 \times 12$			M1	expanding brackets and multiplying both sides by denominator with no more than one sign error
		$eg \ 16x + 9x = 72 + 8 + 15$			M1	for correct rearrangement of a correct equation with terms in x isolated
			3.8	4	A1	oe, award full marks for a correct answer if at least M1 scored

2	(d)	E.g. $6x - 15$ or $12x - 30$ oe		4	M1 for expansion of a correct bracket
		$2 \times 3(2x-5) = 9 - x$ oe or 2((6x-15)) = 9 - x oe or $3(2x-5) = \frac{9}{2} - \frac{x}{2}$ oe			M1 for removal of fraction or separating fraction (RHS) in an equation
		12x + x = 9 + 30 oe or $6x + \frac{x}{2} = \frac{9}{2} + 15$ oe			M1 ft (dep on 4 terms) for terms in x on one side of equation; number terms on the other
			3		A1 dep on at least M2 awarded

3 ((c) $w^2 \times w^n = w^{10}$ or $w^5 \times w^n = w^{13}$ or $w^5 \times w^{n-3} = w^{10}$ or $\frac{w^{5+n}}{w^3} = w^{10}$ oe or $5+n-3 = 10$ or $2+n = 10$ or $5+n = 13$		2	M1	A correct first stage simplifying at least one index in a correct equation or a clearly correct subsequent stage showing correct use of a rule of indices eg $w^5 \times w^n = w^{30}$ and $w^n = w^{30-5}$ or a correct equation using indices only
	Working not required, so correct answer scores full marks (unless from obvious incorrect working)	8		A1	accept w ⁸ (trial and error gains full marks if correct and no marks if incorrect unless a rule of indices is clearly shown)

4 c	$(4^{k+3} =)(2^2)^{k+3}$ oe or $(16 =)2^4$		4	M1	for $(2^2)^{k+3}$ or or 2^4 or
	$(16=)4^2$ or $(2^k=)(4^{\frac{1}{2}})^k$ oe				4^2 or $\left(4^{\frac{1}{2}}\right)^k$ or or
	$(4^{k+3} =) \left(16^{\frac{1}{4}}\right)^{k+3}$ or $\left(2^{k} =\right) \left(16^{\frac{1}{4}}\right)^{k}$ or				$\left(16^{\frac{1}{4}}\right)^{k+3}$ or $\operatorname{or}\left(16^{\frac{1}{4}}\right)^{k}$ or
	$(4^{k+3} =)(2^2)^{k+3}$ oe and $(16 =)2^4$			M1	for $(2^2)^{k+3}$ oe and 2^4 or
	$(16=)4^2$ and $(2^k=)(4^{\frac{1}{2}})^k$ oe				4^2 and $\left(4^{\frac{1}{2}}\right)^k$ oe or
	$(4^{k+3} =) \left(16^{\frac{1}{4}}\right)^{k+3}$ oe and $(2^k =) \left(16^{\frac{1}{4}}\right)^k$ oe				$\left(16^{\frac{1}{4}}\right)^{k+3}$ oe and $\left(16^{\frac{1}{4}}\right)^k$ oe
	E.g.			M1	for a correct linear equation in k
	2k + 6 = 4 + k or $k + 3 = 2 + \frac{1}{2}k$ or				
	$\frac{1}{2}(k+3) = 1 + \frac{1}{4}k$				
		-2		Al	dep on at least M2

5	(b)	eg $y^5 \times y^n = y^{19}$ or $y^{-1} \times y^n = y^{13}$ or $5 + n - 6 = 13$		2	M1	Use of 1 rule of indices or a correct linear equation in <i>n</i>
			14		A1	Accept y ¹⁴